World Library  
Flag as Inappropriate
Email this Article

Integrated Gasification Combined Cycle

Article Id: WHEBN0004538124
Reproduction Date:

Title: Integrated Gasification Combined Cycle  
Author: World Heritage Encyclopedia
Language: English
Subject: Kemper Project, FutureGen, Coal in China, Cost of electricity by source, Eston Grange Power Station
Publisher: World Heritage Encyclopedia

Integrated Gasification Combined Cycle

An integrated gasification combined cycle (IGCC) is a technology that uses a gasifier to turn coal and other carbon based fuels into gas—synthesis gas (syngas). It then removes impurities from the syngas before it is combusted. Some of these pollutants, such as sulfur, can be turned into re-usable byproducts. This results in lower emissions of sulfur dioxide, particulates, and mercury. With additional process equipment, the carbon in the syngas can be shifted to hydrogen via the water-gas shift reaction, resulting in nearly carbon free fuel. The resulting carbon dioxide from the shift reaction can be compressed and stored. Excess heat from the primary combustion and syngas fired generation is then passed to a steam cycle, similar to a combined cycle gas turbine. This results in improved efficiency compared to conventional pulverized coal.


Coal can be found in abundance in the USA and many other countries and its price has remained relatively constant in recent years. Consequently it is used for about 50 percent of U.S. electricity needs.[1] Thus the lower emissions that IGCC technology allows may be important in the future as emission regulations tighten due to growing concern for the impacts of pollutants on the environment and the globe.[1]

This technology is being utilized in a project under construction, located in Kemper, Mississippi. The Kemper Project is using lignite coal to produce energy for Mississippians.


Below is a schematic flow diagram of an IGCC plant:

Block diagram of IGCC power plant, which utilizes the HRSG

The gasification process can produce syngas from a wide variety of carbon-containing feedstocks, such as high-sulfur coal, heavy petroleum residues and biomass.

The plant is called integrated because (1) the syngas produced in the gasification section is used as fuel for the gas turbine in the combined cycle, and (2) steam produced by the syngas coolers in the gasification section is used by the steam turbine in the combined cycle. In this example the syngas produced is used as fuel in a gas turbine which produces electrical power. In a normal combined cycle, so-called "waste heat" from the gas turbine exhaust is used in a Heat Recovery Steam Generator (HRSG) to make steam for the steam turbine cycle. An IGCC plant improves the overall process efficiency by adding the higher-temperature steam produced by the gasification process to the steam turbine cycle. This steam is then used in steam turbines to produce additional electrical power.


The DOE Clean Coal Demonstration Project helped construct 3 IGCC plants: Wabash River Power Station in West Terre Haute, Indiana, Polk Power Station in Tampa, Florida (online 1996), and Pinon Pine in Reno, Nevada. In the Reno demonstration project, researchers found that then-current IGCC technology would not work more than 300 feet (100m) above sea level.[2] The DOE report in reference 3 however makes no mention of any altitude effect, and most of the problems were associated with the solid waste extraction system. The Wabash River and Polk Power stations are currently operating, following resolution of demonstration start-up problems, but the Piñon Pine project encountered significant problems and was abandoned.

The first generation of IGCC plants polluted less than contemporary coal-based technology, but also polluted water; for example, the Wabash River Plant was out of compliance with its water permit during 1998–2001[3] because it emitted arsenic, selenium and cyanide. The Wabash River Generating Station is now wholly owned and operated by the Wabash River Power Association.

IGCC is now touted as capture ready and could potentially capture and store carbon dioxide.[4][5] (See FutureGen)Poland's Kędzierzyn will soon host a Zero-Emission Power & Chemical Plant that combines coal gasification technology with Carbon Capture & Storage (CCS). This installation had been planned, but there has been no information about it since 2009. Other operating IGCC plants in existence around the world are the Alexander (formerly Buggenum) in the Netherlands, Puertollano in Spain, and JGC in Japan.

There are several advantages and disadvantages when compared to conventional post combustion carbon capture and various variations and these are fully discussed at reference 6.[6]

Cost and reliability

The main problem for IGCC is its high capital cost, upwards of $3,593/kW.[7] Official US government figures give more optimistic estimates[8] of $1,491/kW installed capacity (2005 dollars) v. $1,290 for a conventional clean coal facility, but in light of current applications, these cost estimates have been demonstrated to be incorrect.

Outdated per megawatt-hour cost of an IGCC plant vs a pulverized coal plant coming online in 2010 would be $56 vs $52, and it is claimed that IGCC becomes even more attractive when you include the costs of carbon capture and sequestration, IGCC becoming $79 per megawatt-hour vs. $95 per megawatt-hour for pulverized coal.[9] Recent testimony in regulatory proceedings show the cost of IGCC to be twice that predicted by Goddell, from $96 to 104/MWhr.[10][11] That's before addition of carbon capture and sequestration (sequestration has been a mature technology at both Weyburn in Canada (for enhanced oil recovery) and Sleipner in the North Sea at a commercial scale for the past ten years)—capture at a 90% rate is expected to have a $30/MWh additional cost.[12]

Wabash River was down repeatedly for long stretches due to gasifier problems. The gasifier problems have not been remedied—subsequent projects, such as Excelsior's Mesaba Project, have a third gasifier and train built in. However, the past year has seen Wabash River running reliably, with availability comparable to or better than other technologies.

The Polk County IGCC has design problems. First, the project was initially shut down because of corrosion in the slurry pipeline that fed slurried coal from the rail cars into the gasifier. A new coating for the pipe was developed. Second, the thermocoupler was replaced in less than two years; an indication that the gasifier had problems with a variety of feedstocks; from bituminous to sub-bituminous coal. The gasifier was designed to also handle lower rank lignites. Third, unplanned down time on the gasifier because of refractory liner problems, and those problems were expensive to repair. The gasifier was originally designed in Italy to be half the size of what was built at Polk. Newer ceramic materials may assist in improving gasifier performance and longevity. Understanding the operating problems of the current IGCC plant is necessary to improve the design for the IGCC plant of the future. (Polk IGCC Power Plant, ) Keim, K., 2009, IGCC A Project on Sustainability Management Systmes for Plant Re-Design and Re-Image. This is an unpublished paper from Harvard University)

General Electric is currently designing an IGCC model plant that should introduce greater reliability. GE's model features advanced turbines optimized for the coal syngas. Eastman's industrial gasification plant in Kingsport, TN uses a GE Energy solid-fed gasifier. Eastman, a fortune 500 company, built the facility in 1983 without any state or federal subsidies and turns a profit.[13][14]

There are several refinery-based IGCC plants in Europe that have demonstrated good availability (90-95%) after initial shakedown periods. Several factors help this performance:

  1. None of these facilities use advanced technology (F type) gas turbines.
  2. All refinery-based plants use refinery residues, rather than coal, as the feedstock. This eliminates coal handling and coal preparation equipment and its problems. Also, there is a much lower level of ash produced in the gasifier, which reduces cleanup and downtime in its gas cooling and cleaning stages.
  3. These non-utility plants have recognized the need to treat the gasification system as an up-front chemical processing plant, and have reorganized their operating staff accordingly.

Another IGCC success story has been the 250 MW Buggenum plant in The Netherlands. It also has good availability. This coal-based IGCC plant currently uses about 30% biomass as a supplemental feedstock. The owner, NUON, is paid an incentive fee by the government to use the biomass. NUON has constructed a 1,311 MW IGCC plant in the Netherlands, comprising three 437 MW STEG units. The Nuon Magnum IGCC power plant was commissioned in 2011, and was officially opened in June 2013. Mitsubishi Heavy Industries has been awarded to construct the power plant.[15] Following a deal with environmental organizations, NUON has been prohibited from using the Magnum plant to burn coal and biomass, until 2020. Because of high gas prices in the Netherlands, two of the three units are currently offline, whilst the third unit sees only low usage levels. The relatively low 59% efficiency of the Magnum plant means that more efficient CCGT plants (such as the Hemweg 9 plant) are preferred to provide (backup) power.

A new generation of IGCC-based coal-fired power plants has been proposed, although none is yet under construction. Projects are being developed by AEP, Duke Energy, and Southern Company in the US, and in Europe by ZAK/PKE, Centrica (UK), E.ON and RWE (both Germany) and NUON (Netherlands). In Minnesota, the state's Dept. of Commerce analysis found IGCC to have the highest cost, with an emissions profile not significantly better than pulverized coal. In Delaware, the Delmarva and state consultant analysis had essentially the same results.

The high cost of IGCC is the biggest obstacle to its integration in the power market; however, most energy executives recognize that carbon regulation is coming soon. Bills requiring carbon reduction are being proposed again both the House and the Senate, and with the Democratic majority it seems likely that with the next President there will be a greater push for carbon regulation. The Supreme Court decision requiring the EPA to regulate carbon (Commonwealth of Massachusetts et al. v. Environmental Protection Agency et al.)[16] also speaks to the likelihood of future carbon regulations coming sooner, rather than later. With carbon capture, the cost of electricity from an IGCC plant would increase approximately 30%. For a natural gas CC, the increase is approximately 33%. For a pulverized coal plant, the increase is approximately 68%. This potential for less expensive carbon capture makes IGCC an attractive choice for keeping low cost coal an available fuel source in a carbon constrained world.

In Japan, electric power companies, in conjunction with Mitsubishi Heavy Industries has been operating a 200 t/d IGCC pilot plant since the early '90s. In September 2007, they started up a 250 MW demo plant in Nakoso. It runs on air-blown (not oxygen) dry feed coal only. It burns PRB coal with an unburned carbon content ratio of <0.1% and no detected leaching of trace elements. It employs not only F type turbines but G type as well. (see link below)

Next generation IGCC plants with CO2 capture technology will be expected to have higher thermal efficiency and to hold the cost down because of simplified systems compared to conventional IGCC. The main feature is that instead of using oxygen and nitrogen to gasify coal, they use oxygen and CO2. The main advantage is that it is possible to improve the performance of cold gas efficiency and to reduce the unburned carbon (char).

As a reference for powerplant efficiency: -With Frame E gas turbine, 30bar quench gas cooling, Cold Temperature Gas Cleaning and 2 level HRSC it is possible to achieve around 38% energy efficiency. -With Frame F gas turbine, 60 bar quench gasifier, Cold Temperature Gas Cleaning and 3 level+RH HRSC it is possible to achieve around 45% energy efficiency. -Latest development of Frame G gas turbines, ASU air integration, High temperature desulfurization may shift up performance even further.[17]

The CO2 extracted from gas turbine exhaust gas is utilized in this system. Using a closed gas turbine system capable of capturing the CO2 by direct compression and liquefication obviates the need for a separation and capture system.[18]


National and international test codes are used to standardize the procedures and definitions used to test IGCC Power Plants. Selection of the test code to be used is an agreement between the purchaser and the manufacturer, and has some significance to the design of the plant and associated systems. In the United States, The American Society of Mechanical Engineers published the Performance Test Code for IGCC Power Generation Plants (PTC 47) in 2006 which provides procedures for the determination of quantity and quality of fuel gas by its flow rate, temperature, pressure, composition, heating valve, and its content of contaminants. [19]

IGCC Emission Controversy

In 2007, the New York State Attorney General's office demanded full disclosure of "financial risks from greenhouse gases" to the shareholders of electric power companies proposing the development of IGCC coal-fired power plants. "Any one of the several new or likely regulatory initiatives for CO2 emissions from power plants - including state carbon controls, EPA's regulations under the Clean Air Act, or the enactment of federal global warming legislation - would add a significant cost to carbon-intensive coal generation";[20] U.S. Senator Hillary Clinton from New York has proposed that this full risk disclosure be required of all publicly traded power companies nationwide.[21] This honest disclosure has begun to reduce investor interest in all types of existing-technology coal-fired power plant development, including IGCC.

Senator Harry Reid (Majority Leader of the 2007/2008 U.S. Senate) told the 2007 Clean Energy Summit that he will do everything he can to stop construction of proposed new IGCC coal-fired electric power plants in Nevada. Reid wants Nevada utility companies to invest in solar energy, wind energy and geothermal energy instead of coal technologies. Reid stated that global warming is a reality, and just one proposed coal-fired plant would contribute to it by burning seven million tons of coal a year. The long-term healthcare costs would be far too high, he claimed (no source attributed). "I'm going to do everything I can to stop these plants.", he said. "There is no clean coal technology. There is cleaner coal technology, but there is no clean coal technology."[22]

One of the most efficient ways to treat the H2S gas from an IGCC plant is by converting it into sulphuric acid in a wet gas sulphuric acid process wsa process However, the majority of the H2S treating plants utilize the modified Claus process, as the sulphur market infrastructure and the transportation costs of sulphuric acid versus sulphur are in favour of sulphur production.

See also


  1. ^ a b Schon, Samuel C., and Arthur A. Small III. "Climate change and the potential of coal gasification." Geotimes 51.9 (Sept 2006): 20(4). Expanded Academic ASAP. Gale. University of Washington. 28 Oct. 2008 |date=October 29, 2008
  2. ^ Source: Joe Lucas, Executive Director of Americans for Balanced Energy Choices, as interviewed on NPR's Science Friday, Friday May 12, 2006
  3. ^ Wabash (August 2000). "Wabash River Coal Gasification Repowering Project Final Technical Report" (PDF). Work performed under Cooperative Agreement DE-FC21-92MC29310. The U.S. Department of Energy / Office of Fossil Energy / National Energy Technology Laboratory / Morgantown, West Virginia. Retrieved 2008-06-30. As a result, process waste water arising from use of the current feedstock, remains out of permit compliance due to elevated levels of arsenic, selenium and cyanide. To rectify these concerns, plant personnel have been working on several potential equipment modifications and treatment alternatives to bring the discharge back into compliance. Wabash River is currently obligated to resolve this issue by September 2001. [p. ES-6] Elevated levels of selenium, cyanide and arsenic in the waste water have caused the process waste water to be out of permit compliance. Daily maximum values, though not indicated in the table above, were routinely exceeded for selenium and cyanide, and only occasionally for arsenic. [p. 6-14, Table 6.1L] 
  4. ^ El Gemayel, Jimmy. "Simulation of the integration of a bitumen upgrading facility and an IGCC process with carbon capture". FUEL Journal. Retrieved 2014-01-30. 
  5. ^ "Products & Services". Retrieved 2013-10-13. 
  6. ^ Fred, Dr. "Integrated Gasification Combined Cycle (IGCC) for Carbon Capture & Storage | Claverton Group". Retrieved 2013-10-13. 
  7. ^ Excelsior's Mesaba Project
  8. ^ "Electricity Market Module". Retrieved 2013-10-13. 
  9. ^ Goodell, Jeff. "Big Coal." pg. 214. New York, Houghton Mifflin. 2006
  10. ^ Testimony of Dr. Elion Amit, Minnesota Dept. of Commerce.
  11. ^ "State of Minnesota : Office of the Attorney General". Retrieved 2013-10-13. 
  12. ^ [1]
  13. ^ Goodell, Jeff. "Big Coal." New York, Houghton Mifflin. 2006
  14. ^ "Eastman Chemical Company - The results of insight™". Retrieved 2013-10-13. 
  15. ^ [2]
  16. ^ "Massachusetts, et al. v. Environmental Protection Agency, 05-1120 - FindLaw US Supreme Court Center". Retrieved 2013-10-13. 
  17. ^ Analisi Termodinamica di cicli Igcc avanzati, G.Lozza P.Chiesa, Politecnico di Milano, ati2000 conference proceedings
  18. ^ Inumaru, Jun - senior research scientist, Central Research Institute of Electric Power Industry (CRIEPI)(Japan) G8 Energy Ministerial Meeting Symposium, Nikkei Weekly.
  19. ^ [3]
  20. ^ [4]
  21. ^ [5]
  22. ^ [6]

External links

  • Hunstown: Ireland's most efficient power plant @ Siemens Power Generation website
  • Natural Gas Combined-cycle Gas Turbine Power Plants Northwest Power Planning Council, New Resource Characterization for the Fifth Power Plan, August 2002
  • Combined cycle solar power
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Fair are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.