World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Interaction of Chemical and Transport Processes During the Formation of the Arctic Stratospheric Polar Vortex : Volume 11, Issue 12 (08/12/2011)

By Blessmann, D.

Click here to view

Book Id: WPLBN0003995802
Format Type: PDF Article :
File Size: Pages 18
Reproduction Date: 2015

Title: Interaction of Chemical and Transport Processes During the Formation of the Arctic Stratospheric Polar Vortex : Volume 11, Issue 12 (08/12/2011)  
Author: Blessmann, D.
Volume: Vol. 11, Issue 12
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Description: Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany. Dynamical processes during the formation phase of the Arctic polar vortex can introduce considerable interannual variability in the amount of ozone that is incorporated into the vortex. Chemistry in autumn and early winter tends to remove part of that variability because ozone relaxes towards equilibrium. As a quantitative measure of how relevant variable dynamical processes during vortex formation are for the winter ozone abundances above the Arctic we analyze which fraction of an ozone anomaly induced dynamically during vortex formation persists until mid-winter. The work is based on the Lagrangian Chemistry Transport Model ATLAS. Model runs for the winter 1999–2000 are used to assess the fate of an ozone anomaly artificially introduced during the vortex formation phase. From these runs we get detailed information about the persistence of the induced ozone variability over time, height and latitude. Induced ozone variability survives longer inside the polar vortex compared to outside. At 540 K inside the polar vortex half of the initial perturbation survives until mid-winter (3 January) with a rapid fall off towards higher levels, mainly due to NOx induced chemistry. At 660 K 10% of the initial perturbation survives. Above 750 K the signal falls to values below 0.5%. Hence, dynamically induced ozone variability from the vortex formation phase can not significantly contribute to mid-winter variability at levels above 750 K. At lower levels increasingly larger fractions of the initial perturbation survive, reaching 90% at 450 K. In this vertical range dynamical processes during the vortex formation phase are crucial for the ozone abundance in mid-winter.

Interaction of chemical and transport processes during the formation of the Arctic stratospheric polar vortex

Burkholder, J. B., Orlando, J. J., and Howard, C. J., Ultraviolet absorption cross sections of chlorine oxide (Cl$_{\textnormal{2}}O_{\textnormal{2}}$) between 210 and \unit[410]{nm}, J. Phys. Chem., 94, 687–695, 1990.; Carslaw, K. S., Luo, B., and Peter, T.: An analytical expression for the composition of aqueous HNO$_{\textnormal{3}}$-H$_{\textnormal{2}}$SO$_{\textnormal{4}}$ stratospheric aerosols including gas phase removal of HNO$_{\textnormal{3}}$, Geophys. Res. Lett., 22, 1877–1880, 1995.; Charney, J. G. and Drazin, P. G.: Propagation of Planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, 1961.; Carslaw, K. S., Kettleborough, J. A., Northway, M. J., Davies, S., Gao, R.-S., Fahey, D. W., Baumgardner, D. G., Chipperfield, M. P., and Kleinböhl, A.: A vortex-scale simulation of the growth and sedimentation of large nitric acid hydrate particles, J. Geophys. Res., 107, 8300, doi:10.1029/2001JD000467, 2002.; Dorf, M., Butz, A., Camy-Peyret, C., Chipperfield, M. P., Kritten, L., and Pfeilsticker, K.: Bromine in the tropical troposphere and stratosphere as derived from balloon-borne BrO observations, Atmos. Chem. Phys., 8, 7265–7271, doi:10.5194/acp-8-7265-2008, 2008.; Fioletov, V. E. and Shepherd, T. G.: Seasonal persistence of midlatitude total ozone anomalies, Geophys. Res. Lett., 30(7), doi:10.1029/2002GL016739, 2003.; Groo{ß}, J.-U., Günther, G., Konopka, P., Müller, R., McKenna, D. S., Stroh, F., Vogel, B., Engel, A., Müller, M., Hoppel, K., Bevilacqua, R., Richard, E., Webster, C. R., Elkins, J. W., Hurst, D. F., Romanshkin, P. A., and Baumgardner, D. G.: Simulation of ozone depletion in spring 2000 with the Chemical Lagrangian Model of the Stratosphere (CLaMS), J. Geophys. Res., 107, 8295, doi:10.1029/2001JD000456, 2002.; Groo{ß}, J.-U., and Russell III, J. M.: Technical note: A stratospheric climatology for O$_{\textnormal{3}}$, H$_{\textnormal{2}}$O, CH$_{\textnormal{4}}$, NO$_{\textnormal{x}}$, HCl and HF derived from HALOE measurements, Atmos. Chem. Phys., 5, 2797–2807, doi:10.5194/acp-5-2797-2005, 2005.; Kawa, S. R., Bevilacqua, R. M., Margitan, J. J., Douglass, A. R., Schoeberl, M. R., Hoppel, K. W., and Sen, B.: Interaction between dynamics and chemistry of ozone in the setup phase of the Northern Hemisphere polar vortex, J. Geophys. Res., 108, 8310, doi:10.1029/2001JD001527, 2003.; Kawa, S. R., Newman, P. A., Stolarski, R. S., and Bevilacqua, R. M.: Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes, Atmos. Chem. Phys., 5, 1655–1663, doi:10.5194/acp-5-1655-2005, 2005.; Papanastasiou, D. K., Papadimitriou, V. C., Fahey, D. W., and Burkholder, J. B.: UV Absorption Spectrum of the ClO Dimer (Cl$_{\textnormal{2}}O_{\textnormal{2}}$) between 200 and 420 nm, J. Phys. Chem., 113(49), 13711–13726, doi:10.1021/jp9065345, 2009.; Rosenfield, J. E. and Schoeberl, M. R.: On the origin of polar vortex air, J. Geophys. Res., 106/D24, 33485–33497, 2001.; Sander, S. P., Friedl, R. R., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Finlayson-Pitts, B. J., Wine, P. H., Huie, R. E., and Orkin, V. L., Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,


Click To View

Additional Books

  • Atmospheric Hydrogen Variations and Traf... (by )
  • Aerosols Over Continental Portugal (1978... (by )
  • Modeling the Evolution of Aerosol Partic... (by )
  • Technical Note: Recursive Rediscretisati... (by )
  • Effects of Stratospheric Ozone Recovery ... (by )
  • Explicit Calculation of Indirect Global ... (by )
  • Selected Topics on Interactions Between ... (by )
  • Inelastic Scattering in Ocean Water and ... (by )
  • Evidence of Systematic Errors in Sciamac... (by )
  • Lightning NoX, a Key Chemistry–climate I... (by )
  • Partially Oxidised Organic Components in... (by )
  • Aerosol Chemical and Optical Properties ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Fair are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.