World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Toward a Combined Sage Ii-haloe Aerosol Climatology: an Evaluation of Haloe Version 19 Stratospheric Aerosol Extinction Coefficient Observations : Volume 12, Issue 6 (05/06/2012)

By Thomason, L. W.

Click here to view

Book Id: WPLBN0003996136
Format Type: PDF Article :
File Size: Pages 33
Reproduction Date: 2015

Title: Toward a Combined Sage Ii-haloe Aerosol Climatology: an Evaluation of Haloe Version 19 Stratospheric Aerosol Extinction Coefficient Observations : Volume 12, Issue 6 (05/06/2012)  
Author: Thomason, L. W.
Volume: Vol. 12, Issue 6
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Description: NASA, Langley Research Center, Mail Stop 475, Hampton, VA 23681, USA. Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

Anderson, J., Russell III, J. M., Solomon, S., and, Deaver, L. E.: Halogen Occultation Experiment confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol, J. Geophys. Res., 105, 4483–4490, 2000.; Cunnold, D. M., Pitts, M. C., and Trepte, C. R.: An intercomparison of SAGE and SBUV ozone observations for March and April 1979, J. Geophys. Res., 89, 5249–5262, 1984.; Hervig, M. E., Russell, J. M., Gordley, L. L., Park, J. H., and Drayson, S. R.: Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation, Geophys. Res. Lett., 20, 1291–1294, 1993.; Hervig, M. E., Russell, J. M., Gordley, L. L., Daniels, J., Drayson, S. R., and Park, J. H.: Aerosol effects and corrections in the Halogen Occultation Experiment, J. Geophys. Res., 100, 1067–1079, 1995.; Hervig, M. E., Russell, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., and Deshler, T.: Validation of aerosol measurements from the Halogen Occultation Experiment, J. Geophys. Res., 101, 10267–10275, 1996.; Hervig, M. E., Deshler, T., and Russell III, J. M.: Aerosol size distributions obtained from HALOE spectral extinction measurements, J. Geophys. Res., 103, 1573–1583, 1998.; Hervig, M. E. and Deshler, T.: Evaluation of aerosol measurements from SAGE II, HALOE, and balloonborne optical particle counters, J. Geophys. Res., 107, 4031, doi:10.1029/2001JD000703, 2002.; Kent, G. S., Winker, D. M., Osborn, M. T., McCormick, M. P., and Skeens, K. M.: A model for the separation of cloud and aerosol in SAGE II occultation data, J. Geophys. Res., 98, 20725–20735, 1993.; Kent, G. S., Winker, D. M., Vaughan, M. A., Wang, P.-H., and Skeen, K. M.: Simulation of Stratospheric Aerosol and Gas Experiment (SAGE) II cloud measurements using airborne lidar data, J. Geophys. Res., 102, 21795–21807, 1997.; Jackman, C. H., Seals Jr., R. K., and Prather, M. J. (Eds.): Two-Dimensional Intercomparison of Stratospheric Models, NASA CP-3042, National Aeronautics and Space Administration, 1989.; Jones, A., Urban, J., Murtagh, D. P., Sanchez, C., Walker, K. A., Livesey, N. J., Froidevaux, L., and Santee, M. L.: Analysis of HCl and ClO time series in the upper stratosphere using satellite data sets, Atmos. Chem. Phys., 11, 5321–5333, doi:10.5194/acp-11-5321-2011, 2011.; Jones, R. L. and Pyle, J. A.: Observations of CH4 and N2O by the NIMBUS 7 SAMS: A comparison with in situ data and two-dimensional numerical model calculations, J. Geophys. Res., 89, 5263–5279, 1984.; Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C., Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russell III, J. M., and Waters, J. W.: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor, J. Geophys. Res., 101, 3989–4006, 1996.; Russell, P. B., Livingston, J. M., Pueschel, R. F., Hughes, J. J., Pollack, J. B., Brooks, S. L., Hamill, P., Thomason, L. W., Stowe, L. L., Deshler, T., Dutton, E. G., and Berstrom, R. W.: Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses, J. Geophys. Res. 101, 18745–18764, 1996.; SPARC. 2006, Assessment of Stratospheric Aerosol Properties (ASAP), SPARC Report No. 4, WCRP-124, WMO/TD-No. 1295, Feb. 2006, L. Thomason and Th. Peter, Eds.; Steele, H. M., and Turco, R. P.: Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion, J. Geophys. Res., 102, 16737–16747, 1997.; Thomason, L. W., Poole, L. R., and Deshler, T. R.: A global climatology of stratospheric aerosol surface area density as deduced from SAGE II: 1984–1994, J. Geophys. Res., 102, 8967–8976, 1997.; Thomason, L. W., Burton, S. P., Luo, B.-P., and Peter, T.: SAGE II measurements of stratospheric aerosol properties at non-volcanic levels, Atmos. Chem. Phys., 8, 983–995,


Click To View

Additional Books

  • Airborne Measurements of Nucleation Mode... (by )
  • Rates and Regimes of Photochemical Ozone... (by )
  • Spatial, Temporal and Vertical Distribut... (by )
  • Aerosol Composition and Sources During t... (by )
  • Ozone Vegetation Damage Effects on Gross... (by )
  • Summertime Free Tropospheric Ozone Pool ... (by )
  • Iodine Monoxide at a Clean Marine Coasta... (by )
  • Chemical Contribution to Future Tropical... (by )
  • Technical Note: Evaluating a Simple Para... (by )
  • Effects of Dust Particle Internal Struct... (by )
  • A Comprehensive Characterisation of Asia... (by )
  • Mesoscale Circulations Over Complex Terr... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Fair are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.