World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Access of Solar Wind Electrons Into the Martian Magnetosphere : Volume 26, Issue 11 (12/11/2008)

By Dubinin, E. M.

Click here to view

Book Id: WPLBN0004001940
Format Type: PDF Article :
File Size: Pages 14
Reproduction Date: 2015

Title: Access of Solar Wind Electrons Into the Martian Magnetosphere : Volume 26, Issue 11 (12/11/2008)  
Author: Dubinin, E. M.
Volume: Vol. 26, Issue 11
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Lundin, R., Roussos, E., Woch, J., Coates, A., Winningham, J. D., Barabash, S.,...Frahm, R. A. (2008). Access of Solar Wind Electrons Into the Martian Magnetosphere : Volume 26, Issue 11 (12/11/2008). Retrieved from

Description: Max-Planck-Institute für Sonnensystemforschung, Lindau, Germany. Electrons with energy of ~40–80 eV measured by the instrument ASPERA-3 on Mars Express and MAG-ER onboard Mars Global Surveyor are used to trace an access of solar wind electrons into the Martian magnetosphere. Crustal magnetic fields create an additional protection from solar wind plasma on the dayside of the Southern Hemisphere by shifting the boundary of the induced magnetosphere (this boundary is often refereed as the magnetic pileup boundary) above strong crustal sources to ~400 km as compared to the Northern Hemisphere. Localized intrusions through cusps are also observed. On the nightside an access into the magnetosphere depends on the IMF orientation. Negative values of the ByIMF component assist the access to the regions with strong crustal magnetizations although electron fluxes are strongly weakened below ~600 km. A precipitation pattern at lower altitudes is formed by intermittent regions with reduced and enhanced electron fluxes. The precipitation sites are longitudinally stretched narrow bands in the regions with a strong vertical component of the crustal field. Fluxes ≥109 cm−2 s−1 of suprathermal electrons necessary to explain the observed aurora emissions are maintained only for the periods with enhanced precipitation. The appearance of another class of electron distributions – inverted V structures, characterized by peaks on energy spectra, is controlled by the IMF. They are clustered in the hemisphere pointed by the interplanetary electric field that implies a constraint on their origin.

Access of solar wind electrons into the Martian magnetosphere

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., et al.: The Mars Observer Magnetic Fields Investigation, J. Geophys. Res., 97, 7799–7814, 1992.; Acuña, M. H., Connerney, J., Wasilewski, P., et al.: Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor MAG/ER experiment, Science, 279, 790–793, 1998.; Barabash, S., Lundin, R., Andersson, H., et al.: The analyzer of space plasma and energetic atoms (ASPERA-3) for the Mars Express mission, Space Sci. Rev., 126, 113, doi:10.1007/s112-006-9124-8, 2006.; Bertaux, J.-L., Leblanc, F., Witasse, O., et al.: Discovery of an aurora on Mars, Nature, 435, 790–794, doi:10.1038/nature03603, 2005.; Bößwetter, A., Bagdonat, T., Motschmann, U., and Sauer, K.: Plasma boundaries at Mars: A 3-D simulation study, Ann. Geophys., 22, 4363–4379, 2004.; Bertucci, C., Mazelle, C., Crider, D., et al.: Magnetic field draping enhancement at the Martian magnetic pileup boundary from MGS observations, Geophys. Res. Lett., 30(2), 1099, doi:10.1029/2002GL015713, 2003.; Bertucci, C., Mazelle, C., Acuña, M. H., Russell, C. T., and Slavin, J. A.: Structure of the magnetic pileup boundary at Mars and Venus, J. Geophys. Res., 110, A01209, doi:10.1029/2004JA010592, 2005.; Brain, D. A., Halekas, J. S., Peticolas, L. M., Lin, R. P., et al.: On the origin of aurora on Mars, Geophys. Res. Lett., 33, L01201, doi:10.1029/2005GL024782, 2006a.; Brain, D. A., Mitchell, D. L., and Halekas, J. S.: The magnetic field draping direction at Mars from April 1999 through August 2004, Icarus, 182, 464, doi:10.1016/j.icarus.2005.09.023, 2006b.; Brain, D. A.: Mars Global Surveyor measurements of the Martian solar wind interaction, Space Sci. Rev., 126, 77, doi:10.1007/s11214-006-9122-x, 2006c.; Brain, D. A., Lillis, R. J., Mitchell, D. L., et al.: Electron pitch-angle distributions as indicators of magnetic field topology near Mars, J. Geophys. Res., 112, A09201, doi:10.1029/2007JA012435, 2007.; Cain, J. C., Ferguson, B., and Mozzoni, D.: An $n$=90 internal potential function of the Martian crustal field, J. Geophys. Res., 108(E2), 5008, doi:10.1029/2000JE001487, 2003.; Connerney, L. E., Acuña, M., Wasilewski, P., Kletetschka, G., Ness, N. F., Reme, H., Lin, R., and Mitchell, D.: The global magnetic field of Mars and implications for crustal evolution, Geophys. Res. Lett., 28, 4015–4018, 2001.; Crider, D. H., Acuña, M., Connerney, J. E. P., et al.: Observations of the latitude dependence of the location of the Martian magnetic pileup boundary, Geophys. Res. Lett., 29(8), 1170, doi:10.1029/2001GL013860, 2002.; Dubinin, E., Lundin, R., and Schwingenschuh, K.: Solar wind electrons as tracers of the Martian magnetotail topology, J. Geophys. Res., 98, 21 233–21 240, 1994.; Dubinin, E., Fraenz, M, Woch, J., et al.: Plasma morphology at Mars. ASPERA-3 observations, Space Sci. Rev., 126, 209, doi:10.1007/s11214-006-9039-4, 2006.; Dubinin, E., Fraenz, M., Woch, J., et al.: Suprathermal electron fluxes on the nightside of Mars. ASPERA-3 observations, Planet. Space Sci., 56, 846, doi:10.1016/j.pss.2007.12.010, 2008a.; Dubinin, E., Chanteur, G., Fraenz, M., et al.: Asymmetry of plasma fluxes at Mars. ASPERA-3 observations and hybrid simulations, Planet. Space Sci., 56, 832, doi:10.1016/j.pss.2007.12.006, 2008b.; Dubinin E., Chanteur, G., Fraenz, M., and Woch, J.: Field-aligned currents and parallel electric field potential drops at Mars. Scaling from the Earth' aurora, Planet. Space Sci., 56, 868, doi:10.1016/j.pss.2007.01.019, 2008c.; Fedorov, A., Budnik, E., Savaud, J.-A., et al.: Structure of the martian wake, Icarus, 182, 320, doi:10.1016/j.icarus.2005.09.021, 2006.; Fraenz, M., Winningham, J. D., Dubinin, E., Roussos, E., et al.: Plasma intrusion above Mars crustal fields-Mars Express ASPERA-3 observations, Icarus, 182, 406, doi:10.1016/j.icarus.2005.11.016, 2006.; Frahm, R., Winningham, J. D., Sharber, J. R., et al.: Carbon dioxide photoelectron energy peaks at Mars, Icarus, 182, 371, doi:10.1016/j.i


Click To View

Additional Books

  • Ring Current Influence on Auroral Electr... (by )
  • Cluster Peace Observations of Electrons ... (by )
  • Injection and Acceleration of H+ and He2... (by )
  • Anisotropy of Doppler Spectral Parameter... (by )
  • Rotation of the Earth, Solar Activity an... (by )
  • The Shelf-edge Current North-west of Ire... (by )
  • Analysis of Equatorial Plasma Bubble Zon... (by )
  • Superposed Epoch Analysis of Dense Plasm... (by )
  • Vlasov Simulations of Trapping and Loss ... (by )
  • Statistical Analysis of Long-duration Lo... (by )
  • Shock Parameter Calculations at Weak Int... (by )
  • Ionospheric E–f Valley Observed by a Sou... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Fair are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.